
Lecture 5

Prediction/Forecasting

Reminder on Hilbert spaces and projections

Given a measure space (Ω,U , µ), let L2(Ω,U , µ) (or L2(µ) for short) be the set of all measurable
functions f : Ω→ C (or f : Ω→ R) such that

∫
|f |2dµ <∞. We set

〈f1, f2〉 =

∫
f1f2dµ,

‖f‖ =

√∫
|f |2dµ.

Definition 1. f, g in L2(Ω,U , µ) are called orthogonal if 〈f, g〉 = 0. This is denoted f ⊥ g.
Two subsets F and G of L2(Ω,U , µ) are orthogonal if 〈f, g〉 = 0 for every f ∈ F and for
every g ∈ G. This is denoted F ⊥ G.

Theorem 1 (Projection theorem). Let L ⊂ L2(Ω,U , µ) be a closed linear subspace. For every
f ∈ L2(Ω,U , µ) there exists a unique element Πf ∈ L that minimizes l→ ‖f − l‖2 over l ∈ L.
This element is uniquely determined by the requirements Πf ∈ L and f −Πf ⊥ L.

Given a probability space (Ω,U ,P), the space L2(Ω,U ,P) is exactly the set of all complex
(real) random variables with finite second moment E[|X|2]. The inner product is the product
expectation, i.e. 〈X,Y 〉 = E[XY ] and the norm is ‖X‖ =

√
E[|X|2]. Let U0 be a sub σ-field

of the σ-field U . The collection L of all U0-measurable variables Y ∈ L2(Ω,U ,P) is a closed,
linear subspace of L2(Ω,U ,P). By the projection theorem every square-integrable random
variable X possesses a projection onto L and this is the conditional expectation of X given
U0, that is:

Theorem 2. Let U0 be a sub σ-field of the σ-field U . If E[|X|2] < ∞ then Y = E[X|U0] is
a version of the orthogonal projection of X onto L2(Ω,U0,P). In particular, Y = E[X|U0] is
the best estimator in the sense of the least squares estimators:

Y minimizes E[|Y ′ −X|2] with Y ′ U0-measurable.

Linear and nonlinear prediction

Let X = (Xt)t∈Z be a weakly stationary process with mean 0 and autocovariance function
c. Consider the problem of predicting the value of the process X at time t given a linear
combination of the last p values in the past Xt−1, . . . , Xt−p.
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Definition 2. Given a mean zero time series X = (Xt)t∈Z, the best linear predictor of
order p of Xt is the linear combination φ1,pXt−1 + φ2,pXt−2 + · · ·+ φp,pXt−p that minimizes
E[|Xt − Y |2] over all linear combinations Y of Xt−1, . . . , Xt−p. The minimal value E[|Xt −
φ1,pXt−1 − φ2,pXt−2 − · · · − φp,pXt−p|2] is called the square prediction error.

In other words, the best linear predictor of order p ofXt, denoted by ΠpXt, is the projection
of Xt onto the linear subspace Ht−1,p spanned by Xt−1, . . . , Xt−p, i.e.

Ht−1,p = Vect(Xt−1, . . . , Xt−p).

Thanks to Theorem 1,

ΠpXt =

p∑
k=1

φk,pXt−k,

where the coefficients (φk,p)1≤k≤p satisfy

〈Xt − φ1,pXt−1 − · · · − φp,pXt−p, Xt−j〉 = 0, j = 1, . . . , p, (1)

where 〈·, ·〉 is the inner product in L2(Ω,U ,P). Equation (1) can be written as

〈Xt, Xt−j〉 =

p∑
k=1

φk,p〈Xt−k, Xt−j〉, j = 1, . . . , p

and thus, using the stationarity of X,

p∑
k=1

φk,pc(k − j) = c(j), j = 1, . . . , p. (2)

Let Cp be the autocovariance matrix of the vector (Xt−1, . . . , Xt−p), i.e.

Cp =


c(0) c(1) . . . c(p− 1)

c(1)
. . .

. . . c(p− 2)
...

. . .
. . .

...
c(p− 1) . . . c(1) c(0)

 .

Then, (2) can be rewritten as
Cpφp = cp, (3)

where φp = (φ1,p, . . . , φp,p)
′ and cp = (c(1), . . . , c(p))′. If Cp is nonsingular, then φ1,p, . . . , φp,p

can be solved uniquely. Otherwise there are multiple solutions of (3), but any solution will
give the best linear predictor, as this is uniquely determined by the projection theorem.

Proposition 1. If c(0) > 0 and if c(h) → 0 as h → ∞ then Cn = (c(i − j))i,j=1,...,n, is
invertible for every n.

Proof. Admitted.
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The square prediction error can be expressed via the coefficients φ1,p, . . . , φp,p by Pythago-
ras’ rule, which gives, for a weakly stationary process X,

E[|Xt −ΠpXt|2] = E[|Xt|2]− E[|ΠpXt|2] = c(0)− φ′pCpφp. (4)

Example 1. Let X be a causal AR(m) solution of

Xt = φ1Xt−1 + · · ·+ φmXt−m + Zt, (5)

where Z ∼ WN(0, σ2) and φ(z) = 1 −
∑m

k=1 φkz
k 6= 0 on {z ∈ C : |z| ≤ 1}. Then, the best

linear predictor of order p of X, with p ≥ m, is given by
∑p

k=1 φk,pXt−k with

φk,p =

{
φk 1 ≤ k ≤ m,
0 m < k ≤ p.

Indeed, since X is causal, X is of the form

Xt =

∞∑
k=0

ηkZt−k,
∑
k∈N
|ηk| <∞.

Therefore, for any h ≥ 1, using the continuity of the scalar product in L2, we obtain

E[ZtXt−h] = E
[ ∞∑
k=0

ηkZtZt−h−k

]
= 0.

Hence, from (5), we deduce that

E
[(
Xt −

m∑
k=1

φkXt−k

)
Xt−h

]
= E[ZtXt−h] = 0, ∀h ≥ 1,

so that, for any p ≥ m,
∑m

k=1 φkXt−k ∈ Ht−1,p and (Xt −
∑m

k=1 φkXt−k) ⊥ Ht−1,p.

Linear prediction is very common in time series analysis, especially because it is very
simple to use. Indeed, the linear predictor depends on the mean and autocovariance only,
and in a simple way. On the other hand, utilization of general functions f(Xt−1, . . . , Xt−p)
of the observations as predictors may decrease the prediction error. That’s why sometimes,
non-linear predictors are used rather than linear predictors.

Definition 3. The best predictor of Xt based on Xt−1, . . . , Xt−p is the function fp(Xt−1, . . . , Xt−p)
that minimizes E[|Xt − f(Xt−1, . . . , Xt−p)|2] over all measurable functions f : Rp → R.

In other words, the best predictor of Xt is the conditional expectation of Xt given the
variables Xt−1, . . . , Xt−p.
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Yule-Walker estimators and least square estimators for AR(p)

Suppose that we observe n realizations x1, . . . , xn of X1, . . . , Xn from a weakly stationary time
seriesX with mean 0 and autocovariance function c. More precisely, suppose thatX = (Xt)t∈Z
is a centered and causal autoregressive process of order p with unknown parameters φ1, . . . , φp
and σ2, i.e.

Xt − φ1Xt−1 − · · · − φpXt−p = Zt, Z ∼WN(0, σ2). (6)

Our goal is the estimation of the parameters φ1, . . . , φp and σ2 from the data.
Since X is causal, thanks to Theorem 3 in Lecture 3 we have

Xt =
∞∑
j=0

ψjZt−j , (7)

where ψ(z) =
∑∞

j=0 ψjz
j = 1

φ(z) , φ(z) = 1 − φ1z − · · · − φpzp, |z| ≤ 1. Therefore, for any
j = 0, . . . , p,

E
[(
Xt −

p∑
i=1

φiXt−i

)
Xt−j

]
= E[ZtXt−j ] = E

[ ∞∑
k=0

ψkZt−j−kZt

]
.

Thus, observing that ψ0 = 1 (and using the continuity of the scalar product il L2), we get

c(j)−
p∑
i=1

φic(j − i) =
∞∑
k=0

ψkE[Zt−j−kZt] =

{
σ2 if j = k = 0

0 otherwise.

To sum up we have
Cpφp = cp

and
σ2 = c(0)− φ′pcp,

where Cp is the autocovariance matrix (c(i−j))i,j=1,...,p, φp = (φ1, . . . , φp)
′ and cp = (c(1), . . . , c(p))′.

These equations, known as the Yule-Walker equations, express the parameters via the second
moments of the observations. The Yule-Walker estimators φ̂p and σ̂2 are defined by replacing
the true autocovariances c by their sample versions ĉn, namely

Ĉpφ̂p = ĉp

and
σ̂2 = ĉn(0)− φ̂

′
pĉp,

where Ĉp = (ĉn(i− j))pi,j=1 and ĉp = (ĉn(1), . . . , ĉn(p))′.

NB: Since E[Xt] = 0 we will consider as estimator of c(h) the estimator defined as

ĉn(h) =
1

n

n−h∑
i=1

XiXi+h

and not the estimator 1
n

∑n−h
i=1 (Xi − µ̂n)(Xi+h − µ̂n).
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Remark 1. The Yule-Walker estimators come from the comparison between the empirical
autocovariance and the true autocovariance function and therefore are examples of moment
estimators, that is estimators that are defined by matching empirical and true moments or
functionals of them.

Proposition 2. If ĉn(0) > 0 then Ĉp is not singular.

Proof. Admitted.

Thanks to Proposition 2, if ĉn(0) > 0 we can write

φ̂p = Ĉ−1p ĉp (8)

and
σ̂2 = ĉn(0)− ĉ′pĈ

−1
p ĉp. (9)

Remark 2. Another way to obtain (9) is the following. From (4) and Example 1 (taking
m = p) we know that ΠpXt =

∑p
k=1 φkXt−k and

c(0)− φ′pCpφp = E[|Xt −ΠpXt|2] = E[Z2
t ] = σ2.

This suggests to take as an estimator of σ2 the quantity

ĉn(0)− φ̂
′
pĈpφ̂p

that coincides with σ̂2 as defined in (9). Indeed, from (8), we have

ĉn(0)− φ̂
′
pĈpφ̂p = ĉn(0)− φ̂

′
pĈpĈ

−1
p ĉp = ĉn(0)− φ̂

′
pĉp = ĉn(0)− ĉ′pĈ

−1
p ĉp = σ̂2.

Remark 3. Suppose that the data set that we have at our disposal consists of n observations,
x1, . . . , xn, (assumed to come) from a centered weakly stationary time series with autoco-
variance function c. Provided that ĉn(0) > 0 we can propose as a model to fit the data an
autoregressive process of order m < n of the form

Xt − φ̂1Xt−1 − · · · − φ̂mXt−m = Zt, Z ∼WN(0, σ̂2m),

where from (8) and (9),
φ̂m := (φ̂1, . . . , φ̂m)′ = Ĉ−1m ĉm

and
σ̂2m = ĉn(0)− φ̂

′
mĉm.

A natural question is then how to efficiently compute the vector φ̂m and σ̂2m, that is how to
bypass the matrix inversion required in the direct computation of the Yule-Walker estimators.
There are different options: for instance, the Durbin Levinson algorithm or the innovations
algorithm (a possible reference is Chapter 8 in [1]).
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Another classical way to estimate the parameters φ1, . . . , φp and σ2 in (6) is to use the
fact that the true values φ1, . . . , φp minimize the expectation

(β1, . . . , βp)→ E[(Xt − β1Xt−1 − · · · − βpXt−p)
2].

The least squares estimators are the empirical version of this criterion, namely we define
φ̂1, . . . , φ̂p as the minimizing of the function

(β1, . . . , βp)→
1

n

n∑
t=p+1

(
Xt − β1Xt−1 − · · · − βpXt−p

)2
. (10)

The minimum value itself is a reasonable estimator of E[Z2
t ] = σ2. The least squares estimators

φ̂j obtained in this way are not identical to the Yule-Walker estimators but the difference is
small. Indeed, let βp = (β1, . . . , βp)

′, Yn = (Xn, . . . , Xp+1)
′ and

Dn =


Xn−1 Xn−2 . . . Xn−p
Xn−2 Xn−3 . . . Xn−p−1

...
...

...
Xp Xp−1 . . . X1

 .

Then, the right hand side of (10) is equal to 1
n‖Yn−Dnβp‖2 (here ‖·‖ stands for the Euclidian

norm, i.e. if A ∈ Rp, then ‖A‖ =
√∑p

i=1 |ai|2) which is minimized by the vector βp such that
Dnβp is the projection of Yn onto the range of the matrix Dn. Therefore, by the projection
theorem, βp is such that D′n(Yn − Dnβp) = 0. Solving in βp one finds that the minimizing
vector is given by

φ̂p =
( 1

n
D′nDn

)−1 1

n
D′nYn.

Observe that, for any s, t ∈ {1, . . . , p},( 1

n
D′nDn

)
s,t

=
1

n

n∑
j=p+1

Xj−sXj−t ≈ ĉn(s− t) = (Ĉp)s,t,

( 1

n
D′nYn

)
t

=
1

n

n∑
j=p+1

Xj−tXj ≈ (ĉp)t,

that is the least square estimators are nearly identical to the Yule-Walker estimators. More
precisely, they possess the same (normal) limit distribution.

Theorem 3. Let X be a centered causal AR(p) weakly stationary process with Z ∼ IID(0, σ2).
Then both the Yule-Walker and the least squares estimators satisfy

√
n(φ̂p − φp)

d−−−→
n→∞

N (0, σ2C−1p ),

where Cp is the covariance matrix of (X1, . . . , Xp).
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